REPORT DOCUMENTATION PAGE OME N 07040188

Public reporting burden for this collection of Information Is estimated lo average 1 hour per P Including the time for searching Ing data
gathering and maintalning the data nesded, and g and g the Send g thls burdon estimate or any other aspect of ihls
of sugg for g this bur\ien, to Washi s Services, D for and Reports, 1215 Jetferson

Davis High Sulte 1204, Arlington, VA 22202-4302, and to the Office of Management and Bud; e! Pa ork Reduction Project! 0704-0138 Washln ton, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1996 Interim, June 1995 - June 1996
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Automated Evaluation of Tactical Network Protocols P622783.094
Ly JONO: 6TE710
. . CC: BFTO00

Maria C. Lopez, Ann E. M. Brodeen, George W. Hartwig, Jr., and

Michael J. Markowski

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

U.S. Army Research Laboratory

ATTN: AMSRL-IS-TP

Aberdeen Proving Ground, MD 21005-5067

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES 99 6 O 7

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

Decentralized battlefield command and control requires reliable and timely distribution of information. At present,
distribution of digital information is limited by the low-bandwidth noisy channels inherent to combat net radios and
heavy traffic demands, forcing commanders to make decisions from less than timely information. In the ideal
communications network, each node would be smart enough to monitor network performance and, when necessary,
adapt itself to make better use of the available bandwidth. The adaptive network node would employ a decision
algorithm to modify configuration, routing, and protocol parameters based on measured network performance statistics
and system requirements. Our research addresses the effects of noise and interference on communications channels
and construction of network protocols that will be effective on the modern battlefield. The approach emphasizes use of
actual hardware and controlled experimentation to explore alternative protocols. This report describes a suite of
software to automatically execute a test design, and collect and apply preliminary data reduction procedures to baseline
performance data for a prototype communications network.

14, SUBJECT TERMS 15. NUMBER OF PAGES

MORS, factorial design, tactical data buffers, communications channels, 7

automated evaluation tactical network protocols 16. PRICE CODE

17. SECURITY CLASSWATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

P __\P‘re‘gcglg’e_d by ANS) Std. 239-18 298-102
DTIC GUALLLY L&D BGTED X

AUTOMATED EVALUATION OF TACTICAL NETWORK PROTOCOLS
Maria C. Lopez, Ann E. M. Brodeen,
George W. Hartwig, Jr., Michael J. Markowski

U.S. Army Research Laboratory
Aberdeen Proving Ground, Maryland 21005-5067

ABSTRACT

Decentralized battlefield command and control requires reliable and timely distribution of
information. At present, distribution of digital information is limited by the low—bandwidth noisy
channels inherent to combat net radios and heavy traffic demands, forcing commanders to make
decisions from less than timely information. In the ideal communications network, each node would
be smart enough to monitor network performance and, when necessary, adapt itself to make better
use of the available bandwidth. The adaptive network node would employ a decision algorithm to
modify configuration, routing and protocol parameters based on measured network performance
statistics and system requirements. Our research addresses the effects of noise and interference on
communications channels and construction of network protocols that will be effective on the modern
battlefield. The approach emphasizes use of actual hardware and controlled experimentation to
explore alternative protocols. This paper describes a suite of software to automatically execute a
test design, and collect and apply preliminary data reduction procedures to baseline performance
data for a prototype communications network.

BACKGROUND

The primary means of communications at low—echelon fighting units has been and continues
to be voice data transmitted by combat net radios. Gradually, a requirement for digital data transmis-
sion is being inserted into the mission profile. Digital transmissions allow for compression and for-
ward error correction and provide the ubiquitous computer with the information it requires. With
this increasing requirement for digital transmissions, problems arise.

Modern combat net radios are typically line—of—sight FM low power instruments designed
specifically for use at short range. Their bandwidth is very limited, typically 1200-2400 baud, al-
though recent improvements in modem technology have pushed these numbers as high as 16 kilo—
baud. These radios are commonly assembled into a single hop network of 6 to 12 users. Their effec-
tive use to date is testimony to the redundancy of the human language and the ability of the human
brain to extract meaningful data from a noisy signal.

Our research addresses the effects of noise and interference on communications channels and
construction of network protocols and procedures that will minimize delay and maximize through-
put on the modern battlefield. The networks that are of particular interest to us have nodes with high
computing power but weak, noisy, shared communications links. For this reason, our approach to
communications emphasizes working intelligently at each node to limit or redirect the amount of
information that must be passed along the communications channel. Each node is assumed to act
independently to improve the effectiveness of the information exchange between nodes. Such a sys-
tem of controls requires that each node be able to monitor the network traffic; decide whether perfor-
mance is inadequate; and, if so, make an appropriate adjustment to the protocol.

A series of controlled experiments is being conducted to determine which communications
protocol parameters and structural assumptions have the greatest impact on selected performance

measures as well as to explore the limitations of the software. To accomplish such objectives, it is
required that a group of computers serving as battlefield nodes be synchronized, network parameters
be initialized prior to each run, and collected data be made conveniently accessible to the user. As
aresult, software that performs the necessary tasks with minimal user intervention was developed.

TEST DESIGN AND APPROACH

Experimental design provides a means of deciding before any runs are made which particular
configurations to examine so that the desired information can be collected with the least amount of
testing. Carefully designed experiments are much more efficient than a ‘‘hit-or—miss” sequence of
runs in which a number of alternative configurations are unsystematically tried just to see what hap-
pens.

When the number of factors is moderate, a factor—screening strategy, such as a factorial de-
sign, might be able to indicate which factors appear to be important, and more to the point, which
factors are irrelevant and can be simply fixed at some reasonable level and omitted from further con-
sideration. The software currently supports the fully automated execution of a modified 2K factorial
design. The 2K factorial design is an economical strategy that requires choosing just two levels for
each factor and then calls for runs at each 2¥ possible factor—level of interest combination. The k
factors selected for automation, retry time-out interval, window size, arrival rate, and message
length are ones that can be easily modified. Past experimentation with actual hardware and a tactical
communications protocol illustrated that network behavior is nonlinear in nature [Kaste, Brodeen,
and Broome 1992]. A potential concern with the use of two-level factorial designs is the assumption
of linearity in the factor effects. That is not to say that a 2 system requires perfect linearity — this
system works quite well even when the linearity assumption holds only very approximately. How-
ever, to provide protection against possible curvature in the response data, the 2X factorial design
has been modified by the addition of runs to be made at the center of the design. The replicate runs
are added to the design center as the center points do not impact the usual effects estimates in a 2K
design. For more information refer to Montgomery [1991].

EXPERIMENTAL CONFIGURATION

There are three nodes, each of which is a SPARCbook 3 [SPARCbook 3 Series 1984]. Each
contains a communications protocol and a scenario driver. The communications protocol includes
data collection functions to log the sending and receipt of messages and acknowledgements as well
as information on queues. The scenario driver provides the communications loading. The nodes
are connected, via ethernet, to a SPARCstation 20 [SPARCstation 20 System 1994] that serves as
the data storage and control node. The nodes are connected to Single Channel Ground and Airborne
Radio System (SINCGARS) Combat Net Radios via Tactical Data Buffers (TDB). Resistor loads
are used as the antennas to reduce the transmission range.

The TDB interfaces with data processing equipment using RS-232C. Two processing steps
are performed to input data to the TDB: 1) any formatting bits, such as start, stop, and parity, are
removed so that transmission time is not expended by unnecessary data; 2) the data are stored until
the TDB can access the network.

When data are transmitted from the TDB, three levels of forward error correction are applied.
First, Bose~Chandhuri-Hacquenghem (BCH) coding is applied at a 48/32 rate. Second, interleaved
redundancy takes place with redundancies of 13 times, 5 times, or 1 time as determined by a front
panel switch. Third, datarandomization takes place. This assures an independence from the specific
characteristics of any type radio when encryption is not being used.

The throughput rate is determined by the three forward error correction processes: interleaved
redundancy of 1 time yields 10.66 kilobits per second (kbps), 5 times yields 2.133 kbps, and 13 times
yields 820 kbps. Forward error correction with redundancy of 5 was selected for the experiment.
Storing the input data provides independence of the input and output characteristics. The storage
capacity is 24 kilobytes.

The receiving TDB unrandomizes the data, performs the appropriate level of de-interleaving,
does a bit—by—bit majority vote, and does the BCH decoding. The data are then passed to the storage
buffer where formatting bits are reinserted and then output on the RS-232C line to the data proces-
sing device. For more details refer to Harris [1987].

Figure 1 illustrates the experimental configuration.

SOFTWARE CONFIGURATION

The software discussed in this paper consists of four parts: the test driver, the data reduction
software, the communications software, and the scenario driver.

The test driver is a menu—driven user interface written in C language [Kernighan and Ritchie
1988], the main language of the UNIX operating system [McGilton and Morgan 1983], using the
X Window library [Nye 1992], which is based on the X Toolkit Intrinsics, the lower level of pro-
gramming interface to X [Flanagan 1992}, and the Motif toolkit, the standard mechanism on which
many of the toolkits written for the X Window System are based [Ferguson 1994]. It coordinates
all tasks necessary to execute the experimental design. Prior to the test driver existence, the exper-
imental design for similar tests was executed manually, requiring extra time for setup and the possi-
bility of errors during the initialization phase of a test cell.

Among its tasks, the test driver generates messages for the scenario driver, updates the factor—
level combinations, distributes the information to the different nodes, and synchronizes the nodes’

HARDWARE SOFTWARE /
Remote Nodes | | Each Remote Node

1 SIHCHRARS

FM

log file

SCENARIO
DRIVER

Parameters files
Message files

Control Node

Analyzed fil ynchronize clocks Copy paramelers
zed files i
y Retrieve log files and message files

Start test cell
\ End test cell
2.4
DATA Par files
6 SPARCstation REDUCTION | ggﬁelggg;’gi{fes I—) Message files

Figure 1. Experimental Configuration

log

clocks. In addition, it starts and ends each test cell, retrieves all log files from the remote nodes for
storage on the control node, and computes measures of performance. To minimize input errors, the
test driver runs all experimental combinations without human intervention. The software is capable
of executing independent replications of the design matrix automatically, with each replication using
different random numbers, starting in the same initial state, and all statistical counters reset to zero.

The test driver reads information contained in text files to initialize values that may vary de-
pending on the experimental design. These text files contain values that need initialization prior to
the test cell such as factors and levels of interest, the number of replicates for each test cell, the num-
ber of replicates for the center point, the random number seeds to generate the desired message sets
or scenarios, the number of retries for each message not delivered during the retry time, node identi-
fication string, and the length of each run. Other values that are initialized are the name of the direc-
tories into which the software will store the data, the directories where binary files that need execu-
tion are located, and values that are used by the data reduction software. The text files used for
initialization may be modified either by manually editing the files prior to running the test driver
or by menu selection before executing the experimental design.

The communications and scenario driver software on the remote nodes have their own input
files, and these also need to be updated prior to each test cell. The control node has a copy of these
files (template files), which the test driver updates and copies on the remote nodes. Template files
are used whenever part of a file needs to be modified. Examples of this kind of file are the capabili-
ties input file (cif_nodename) loaded by the communications software to initialize the nodes’ id, the
window size and time to retry (Figure 2a), and the nodename## file from which the scenario driver
gets the message information to load messages into communications software.

Tasks executed on the remote node such as synchronizing clocks, starting and ending the
execution of a test cell (Figure 2b), as well as on the control node such as copying files to the remote
nodes (Figure 2a) and retrieving log files from the remote nodes, are invoked by the test driver
through UNIX shell procedures [McGilton and Morgan 1983].

NodeA

FEP_DRIVER

Control Node NodeA Control Node

cif template file

Node id
Window size

Retry time SHELL

. PROCEDURE

(template file)

cif_NodeA

NodeA
8

40

+” "FACT “»
¢ EXCHANGE :
e PROTOCOL »
-y
A RY
.
1]
cif_NodeA

NodeA
8

40

start template file /

start dfb on nodeid
start fep_driver on
nodeid

SHELL
PROCEDURE

(template file) start

start dfb on nodeA
start fep_driver on execul

s

a. Update and copy of input file to the remote node.

b. Update of a shell procedure to start a process on the
remote node,

Figure 2. Template File with Shell Procedure Interaction

During the execution of a test cell, each node collects data on a log file local to that node. The
log files contain information on the messages and acknowledgments sent and received, as well as
information on queues. The data reduction software is a set of C programs that reformat log files
and compute measures of performance. The test driver executes UNIX shell procedures to invoke
the data reduction software. For example, for each log file created by a test cell, the test driver
executes a shell procedure process.s, which invokes the C program dr with a set of arguments to
create a file containing the messages transmitted during a particular test cell grouped into 1-minute
time intervals. The shell procedure process.ack invokes dr with different arguments and outputs all
the acknowledgments generated during that test cell. The shell procedures that contain node in-
formation are updated using template files. The output of the data reduction software is formatted
in a fashion suitable for a statistical analysis.

The communications software is a C language application composed of a freeform database
management system called Distributed FactBase (DFB), which communicates with the other DFBs
via the Fact Exchange Protocol (FEP). Animportant concept implemented in the DFB is the ability
to automatically initiate predefined actions (rules) upon receipt of new information. These rules en-
sure that only significant data (as defined by the commander and staff) are transmitted [Chamberlain
1990]. The FEP is a tactical transport layer protocol that communicates information quickly, con-
cisely, and reliably over noisy nets with minimum bandwidth usage. It is designed to be a connec-
tionless, reliable protocol that utilizes multicast, overhearing, and other techniques to minimize
transmissions [Kaste 1990]. A data collection function is provided by the DFB to log information
on messages, including acknowledgments, transmitted and received.

The scenario driver is a C language application that reads a file of time tagged, preformatted
message strings and forwards them to the DFB at the appropriate times.

Figure 3 illustrates the software configuration.

DATA fog files 1 S Updat t
y . pdate parameters
é—g.—_ Create message files |—>> Kdaégéggge%flges
Y N Q/ 3, \I/ 2.

Synchronize clocks
Analyzed files Retrieve log files Start test cell acrfcgég:;:;e;‘fll:s

LEnd test cell

Control Node

¢’ SCENARIO
DRIVER

FACT
EXCHANGE
PROTOCOL

o —— — — ————

SCENARIO
DRIVER

1
|
|

log file |
|
|
|
I

FACT
EXCHANGE
PROTOCOL

Figure 3. Software Configuration

SUMMARY

The template files are useful in simplifying the programmer’s job when the experimental con-
figuration requires modification. This allows fast and easy modifications to experimental configu-
ration since the input is not “hard wired” in the code. For instance, if the number of nodes needs
to be increased or decreased, the programmer modifies the input text files containing node informa-
tion and the updates on the remote software take place during the test driver initialization phase.

Because the test driver is of a general nature, it can be used in a variety of situations to run
an experiment in a distributed UNIX environment.

It is anticipated that future experiments can be automated to consider more complex commu-
nications protocol modifications. Automating the process reduces the chance of operator error and
simplifies the execution of the experimental design.

[1]

(2]

[3]

(4]

(3]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

References

Chamberlain, S. C. “The Information Distribution System: IDS — An
Overview.” BRL-TR-3114, Ballistic Research Laboratory, Aberdeen
Proving Ground, MD, 1990.

Ferguson, P. M. Motif Reference Manual. Volume 6B, 1st Edition, Se-
bastopol, CA: O’Reilly & Associates, Inc., 1994.

Flanagan, D. X Toolkit Intrinsics Reference Manual. Volume 5, 3rd Edi-
tion, Sebastopol, CA: O’Reilly & Associates, Inc., 1992.

Harris RF Communications RF-3490 Digital Data Buffer Instruction
Manual. Rochester, NY: Harris Corporation, 1987.

Kaste, V. A., A. E. Brodeen and B. D. Broome. ‘“An Experiment to Ex-
amine Protocol Performance Over Combat Net Radios.” BRL-MR-3978,
Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 1992.

Kaste, V. A. “The Information Distribution System: The Fact Exchange
Protocol, A Tactical Communications Protocol.” BRL-MR-3856, Ballis-
tic Research Laboratory, Aberdeen Proving Ground, MD, 1990.

Kernighan, B. W., and D. M. Ritchie. The C Programming Language.
2nd Edition, Englewood Cliffs, NJ: Prentice—Hall Inc., 1988.

McGilton, H. and R. Morgan. Introducing the UNIX System. New York,
NY: McGraw-Hill Book Company, 1983.

Montgomery, D. C. Design & Analysis of Experiments. 3rd Edition,
New York, NY: John Wiley & Sons Inc., 1991.

Nye, A. Xlib Reference Manual. Volume 2, 3rd Edition, Sebastopol, CA:
O’Reilly & Associates Inc., 1992.

SPARCbook 3 Series Technical Reference Manual. Austin, TX: Tadpole
Technology Inc., 1994.

SPARCstation 20 System Specifications Manual. Mountain View, CA:
Sun Microsystems Inc., 1994.

